skip to main content


Search for: All records

Creators/Authors contains: "Awan, Jordan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Weller, Adrian (Ed.)
    While differential privacy (DP) offers strong theoretical privacy guarantees, implementations of DP mechanisms may be vulnerable to side-channel attacks, such as timing attacks. When sampling methods such as MCMC or rejection sampling are used to implement a privacy mechanism, the runtime can leak private information. We characterize the additional privacy cost due to the runtime of a rejection sampler in terms of both (, δ)-DP as well as f -DP. We also show that unless the acceptance probability is constant across databases, the runtime of a rejection sampler does not satisfy -DP for any . We show that there is a similar breakdown in privacy with adaptive rejection samplers. We propose three modifications to the rejection sampling algorithm, with varying assumptions, to protect against timing attacks by making the runtime independent of the data. The modification with the weakest assumptions is an approximate sampler, introducing a small increase in the privacy cost, whereas the other modifications give perfect samplers. We also use our techniques to develop an adaptive rejection sampler for log-H ̈older densities, which also has data-independent runtime. We give several examples of DP mechanisms that fit the assumptions of our methods and can thus be implemented using our samplers. 
    more » « less
  2. Weller, Adrian (Ed.)
    Differential privacy (DP) offers strong theoretical privacy guarantees, though implementations of DP mechanisms may be vulnerable to side-channel attacks, such as timing attacks. When sampling methods such as MCMC or rejection sampling are used to implement a mechanism, the runtime can leak private information. We characterize the additional privacy cost due to the runtime of a rejection sampler in terms of both (epsilon,delta)-DP as well as f-DP. We also show that unless the acceptance probability is constant across databases, the runtime of a rejection sampler does not satisfy epsilon-DP for any epsilon. We show that there is a similar breakdown in privacy with adaptive rejection samplers. We propose three modifications to the rejection sampling algorithm, with varying assumptions, to protect against timing attacks by making the runtime independent of the data. The modification with the weakest assumptions is an approximate sampler, introducing a small increase in the privacy cost, whereas the other modifications give perfect samplers. We also use our techniques to develop an adaptive rejection sampler for log-Holder densities, which also has data-independent runtime. We give several examples of DP mechanisms that fit the assumptions of our methods and can thus be implemented using our samplers. 
    more » « less
  3. Koyejo, Sanmi ; Mohamed, Shakir (Ed.)
    Differentially private mechanisms protect privacy by introducing additional randomness into the data. Restricting access to only the privatized data makes it challenging to perform valid statistical inference on parameters underlying the confidential data. Specifically, the likelihood function of the privatized data requires integrating over the large space of confidential databases and is typically intractable. For Bayesian analysis, this results in a posterior distribution that is doubly intractable, rendering traditional MCMC techniques inapplicable. We propose an MCMC framework to perform Bayesian inference from the privatized data, which is applicable to a wide range of statistical models and privacy mechanisms. Our MCMC algorithm augments the model parameters with the unobserved confidential data, and alternately updates each one conditional on the other. For the potentially challenging step of updating the confidential data, we propose a generic approach that exploits the privacy guarantee of the mechanism to ensure efficiency. In particular, we give results on the computational complexity, acceptance rate, and mixing properties of our MCMC. We illustrate the efficacy and applicability of our methods on a na\"ive-Bayes log-linear model as well as on a linear regression model. 
    more » « less
  4. Koyejo, S. ; Mohamed, S. ; Agarwal, A. ; Belgrave, D. ; Cho, K. ; Oh, A. (Ed.)
    A canonical noise distribution (CND) is an additive mechanism designed to satisfy f-differential privacy (f-DP), without any wasted privacy budget. f-DP is a hypothesis testing-based formulation of privacy phrased in terms of tradeoff functions, which captures the difficulty of a hypothesis test. In this paper, we consider the existence and construction of both log-concave CNDs and multivariate CNDs. Log-concave distributions are important to ensure that higher outputs of the mechanism correspond to higher input values, whereas multivariate noise distributions are important to ensure that a joint release of multiple outputs has a tight privacy characterization. We show that the existence and construction of CNDs for both types of problems is related to whether the tradeoff function can be decomposed by functional composition (related to group privacy) or mechanism composition. In particular, we show that pure epsilon-DP cannot be decomposed in either way and that there is neither a log-concave CND nor any multivariate CND for epsilon-DP. On the other hand, we show that Gaussian-DP, (0,delta)-DP, and Laplace-DP each have both log-concave and multivariate CNDs. 
    more » « less
  5. Koyejo, S. ; Mohamed, S. ; Agarwal, A. ; Belgrave, D. ; Cho, K. ; Oh, A. (Ed.)
    Differentially private mechanisms protect privacy by introducing additional randomness into the data. Restricting access to only the privatized data makes it challenging to perform valid statistical inference on parameters underlying the confidential data. Specifically, the likelihood function of the privatized data requires integrating over the large space of confidential databases and is typically intractable. For Bayesian analysis, this results in a posterior distribution that is doubly intractable, rendering traditional MCMC techniques inapplicable. We propose an MCMC framework to perform Bayesian inference from the privatized data, which is applicable to a wide range of statistical models and privacy mechanisms. Our MCMC algorithm augments the model parameters with the unobserved confidential data, and alternately updates each one conditional on the other. For the potentially challenging step of updating the confidential data, we propose a generic approach that exploits the privacy guarantee of the mechanism to ensure efficiency. We give results on the computational complexity, acceptance rate, and mixing properties of our MCMC. We illustrate the efficacy and applicability of our methods on a naive-Bayes log-linear model and on a linear regression model. 
    more » « less
  6. null (Ed.)